Termokimia



Review Termokimia







DOSEN PENGAMPU:
Dr. YUSNELTI, M.Si
NAMA : REFI RIZKIANDI
NIM : A1C217030




PROGRAM STUDI PENDIDIKAN MATEMATIKA
FAKULTAS KEGURUAN DAN ILMU PENGETAHUAN
UNIVERSITAS JAMBI
2017






BAB I
PENDAHULUAN

I.1. Latar Belakang
Dalam makalah ini, kami mengambil tema mengenai Termokimia. Kami memilih tema ini karena kami rasa materi ini sangat penting untuk dipelajari. Termokimia merupakan salah satu materi dasar dalam kimia yang harus dikuasai.
Di dalam makalah ini kami membahas tentang konsep dasar dari termokimia yang kami sajikan pada bagian awal dari isi makalah. Hal ini kami lakukan karena kami menilai untuk memahami suatu materi, kita harus mengetahui konsep dasar terlebih dahulu, kemudian dilanjutkan pada bagian inti materi.
Termokimia merupakan materi yang harus dipahami dengan baik karena di dalamnya mencakup cukup banyak materi lainnya, seperti termodinamika I, kalor reaksi, kerja, entalpi, kalorimeter, hukum Hess, penentuan DH reaksi, energi ikatan, dan jenis-jenis kalor. Maka dari itu, kami berusaha untuk membuat materi termokimia dalam makalah ini menjadi ringkas dan mudah dipahami.

I.2. Tujuan Penulisan
1.  Untuk mempelajari konsep dasar termokimia
2.  Untuk mempelajari materi-materi yang terkait dengan termokimia
3.  Memahami tentang termokimia lebih mendalam
I.3. Metode Penulisan
            Dalam menulis makalah ini, kami memperoleh kajian materi dari beberapa sumber, yaitu studi literatur dari buku-buku yang terkait dengan topik dan berbagai artikel dari internet.


BAB II
ISI

II.1. Konsep Dasar
Termokimia adalah ilmu yang mempelajari hubungan antara energi panas dan energi kimia. Sedangkan energi kimia didefinisikan sebagai energi yang dikandung setiap unsur atau senyawa. Energi kimia yang terkandung dalam suatu zat adalah semacam energi potensial zat tersebut. Energi potensial kimia yang terkandung dalam suatu zat disebut panas dalam atau entalpi dan dinyatakan dengan simbol H. Selisih antara entalpi reaktan dan entalpi hasil pada suatu reaksi disebut perubahan entalpi reaksi. Perubahan entalpi reaksi diberi simbol ΔH.
Bagian dari ilmu kimia yang mempelajari perubahan kalor atau panas suatu zat yang menyertai suatu reaksi atau proses kimia dan fisika disebut termokimia. Secara operasional termokimia berkaitan dengan pengukuran dan pernafsiran perubahan kalor yang menyertai reaksi kimia, perubahan keadaan, dan pembentukan larutan.
Termokimia merupakan pengetahuan dasar yang perlu diberikan atau yang dapat diperoleh dari reaksi-reaksi kimia, tetapi juga perlu sebagai pengetahuan dasar untuk pengkajian teori ikatan kimia dan struktur kimia. Fokus bahasan dalam termokimia adalah tentang jumlah kalor yang dapat dihasilkan oleh sejumlah tertentu pereaksi serta cara pengukuran kalor reaksi.
Termokimia merupakan penerapan hukum pertama termodinamika terhadap peristiwa kimia yang membahas tentang kalor yang menyertai reaksi kimia.

II.2. Termodinamika I
Termodinamika kimia dapat didefenisikan sebagai cabang kimia yang menangani hubungan kalor, kerja dan bentuk lain energi, dengan kesetimbangan dalam reaksi kimia dan dalam perubahan keadaan. Termokimia erat kaitannya dengan termodinamika, karena termokimia menangani pengukuran dan penafsiran perubahan kalor yang menyertai reaksi kimia, perubahan keadaan dan pembentukan larutan.
Thermodinamika merupakan ilmu tentang energi, yang secara spesifik membahas tentang hubungan antara energi panas dengan kerja. Seperti telah diketahui bahwa energi di dalam alam  dapat terwujud dalam berbagai bentuk, selain energi panas dan kerja, yaitu energi kimia, energi listrik, energi nuklir, energi gelombang elektromagnit, energi akibat gaya magnit, dan lain-lain. Energi dapat berubah dari satu bentuk ke bentuk lain, baik secara  alami maupun hasil rekayasa tehnologi. Selain itu energi di alam semesta bersifat kekal, tidak dapat dibangkitkan atau dihilangkan, yang terjadi adalah perubahan energi dari satu bentuk menjadi bentuk lain tanpa ada pengurangan atau penambahan. Prinsip ini disebut sebagai prinsip konservasi atau kekekalan energi
    Suatu sistem thermodinamika adalah suatu masa atau daerah yang dipilih untuk dijadikan obyek analisis.   Daerah sekitar sistem tersebut disebut sebagai lingkungan. Batas antara sistem dengan lingkungannya disebut batas sistem (boundary), seperti terlihat pada Gambar 1.1. Dalam aplikasinya batas sistem nerupakan bagian dari sistem maupu lingkungannya, dan dapat tetap atau dapat berubah posisi atau bergerak. 
Penerapan hukum termodinamika pertama dalam bidang kimia merupakan bahan kajian dari termokimia.” Energi tidak dapat diciptakan atau dimusnahkan, tetapi dapat diubah dari satu bentuk ke bentuk yang lain, atau energi alam semesta adalah konstan.” hukum termodinamika 1
Perubahan kalor pada tekanan konstan:
DH = DE + PDV
W= PDV
DE = energi dalam
Pada proses siklis (keadaan akhir identik dengan kedaan awal) U1 =U2 è U2 - U1 = 0 , karena U adalah fungsi keadaan dan dalam keadaan sama nilai U juga sama.  Pada proses siklis dimungkinkan adanya panas yang keluar sistem.  Sehingga panas netto yg masuk ke dalam sistem seluruhnya dipakai untuk melakukan usaha
Hukum pertama termodinamika dapat dirumuskan sbg
∆U = Q – W
∆U è perubahan tenaga dakhil sistem
Q è panas yang masuk/keluar dari sistem
W è Usaha yang dilakukan thp sistem
Tenaga dakhil adalah jumlah tenaga kinetik dan tenaga potensial molekul-molekulnya (pada gas sempurna molekulnya tidak tarik-menarik).  Perumusan di atas tidak meninjau kemungkinan sistem yg bergerak nisbi terhadap lingkungan
Mekanika è ∆Ek = W (tenaga kinetik benda = usaha yg dilakukan thp sistem)
Termodinamika, W-nya (-) è ∆Ek = -W
Pada suatu proses, tenaga kinetik maupun tenaga dakhil dapat berubah yg disebabkan oleh arus panas ataupun usaha.  Sehingga hukum pertama dapat ditulis :

∆U + ∆Ek = Q – Wt

Wt è Usaha total (usaha sistem sendiri, juga gaya-gaya yg lain.  Usaha tersebut karena gaya konservatif maupun nonkonservatif
      è  Wt = Wk + Wnk
Dengan rumus hukum pertama termodinamika berubah.  Menurut mekanika besar usaha oleh gaya konservatif, misalnya gaya gravitasi Wk = -∆Ep, pada termodinamika menjadi Wk = ∆Ep
∆U + ∆Ek + ∆EP = Q – Wnk
           
II.3.     Entalpi
Entalpi (H) adalah jumlah total dari semua bentuk energi. Entalpi (H) suatu zat ditentukan oleh jumlah energi dan semua bentuk energi yang dimiliki zat yang jumlahnya tidak dapat diukur dan akan tetap konstan selama tidak ada energi yang masuk atau keluar dari zat. . Misalnya entalpi untuk air dapat ditulis H H20 (l) dan untuk es ditulis H H20 (s).
Untuk menyatakan kalor reaksi pada tekanan tetap (qp ) digunakan besaran yang disebut Entalpi ( H ).
H   = E + ( P.V )
DH       = DE + ( P. DV )
DH = (q + w ) + ( P. DV )
DH = qp – ( P. DV ) + ( P. DV )
DH = qp
Untuk reaksi kimia :
DH = Hp – Hr
Hp = entalpi produk
Hr  = entalpi reaktan
Reaksi pada tekanan tetap      : qp  = DH ( perubahan entalpi )
Reaksi pada volume tetap       : qv  = DE ( perubahan energi dalam )
Perubahan kalor atau entalpi yang terjadi selama proses penerimaan atau pelepasan kalor dinyatakan dengan ” perubahan entalpiH) ” . Harga entalpi zat sebenarnya tidak dapat ditentukan atau diukur. Tetapi ΔH dapat ditentukan dengan cara mengukur jumlah kalor yang diserap sistem. Misalnya pada perubahan es menjadi air, yaitu 89 kalori/gram. Pada perubahan es menjadi air, ΔH adalah positif, karena entalpi hasil perubahan, entalpi air lebih besar dari pada entalpi es. Pada perubahan kimia selalu terjadi perubahan entalpi. Besarnya perubahan entalpi adalah sama besar dengan selisih antara entalpi hasil reaksi dan jumlah entalpi pereaksi.
Setiap sistem atau zat mempunyai energi yang tersimpan didalamnya. Energi potensial berkaitan dengan wujud zat, volume, dan tekanan. Energi kinetik ditimbulkan karena atom – atom dan molekul­-molekul dalam zat bergerak secara acak. Jumlah total dari semua bentuk energi itu disebut entalpi (H) . Entalpi akan tetap konstan selama tidak ada energi yang masuk atau keluar dari zat. . Misalnya entalpi untuk air dapat ditulis H H20 (l) dan untuk es ditulis  H H20 (s).
Entalpi (H) suatu zat ditentukan oleh jumlah energi dan semua bentuk energi yang dimiliki zat yang jumlahnya tidak dapat diukur. Perubahan kalor atau entalpi yang terjadi selama proses penerimaan atau pelepasan kalor dinyatakan dengan ” perubahan entalpiH) ” . Misalnya pada perubahan es menjadi air, maka dapat ditulis sebagai berikut:
Δ H = H H20 (l) -H H20 (s)
Apabila kita amati reaksi pembakaran bensin di dalam mesin motor. Sebagian energi kimia yang dikandung bensin, ketika bensin terbakar, diubah menjadi energi panas dan energi mekanik untuk menggerakkan motor. Demikian juga pada mekanisme kerja sel aki. Pada saat sel aki bekerja, energi kimia diubah menjadi energi listrik, energi panas yang dipakai untuk membakar bensin dan reaksi pembakaran bensin menghasilkan gas, menggerakkan piston sehingga menggerakkan roda motor.
Gambar berikut ini menunjukkan diagram perubahan energi kimia menjadi berbagai bentuk energi lainnya.
Harga entalpi zat sebenarnya tidak dapat ditentukan atau diukur. Tetapi ΔH dapat ditentukan dengan cara mengukur jumlah kalor yang diserap sistem. Misalnya pada perubahan es menjadi air, yaitu 89 kalori/gram. Pada perubahan es menjadi air, ΔH adalah positif, karena entalpi hasil perubahan, entalpi air lebih besar dari pada entalpi es.
Termokimia merupakan bagian dari ilmu kimia yang mempelajari perubahan entalpi yang menyertai suatu reaksi. Pada perubahan kimia selalu terjadi perubahan entalpi. Besarnya perubahan entalpi adalah sama besar dengan selisih antara entalpi hasil reaksi dam jumlah entalpi pereaksi.
Pada reaksi endoterm, entalpi sesudah reaksi menjadi lebih besar, sehingga ΔH positif. Sedangkan pada reaksi eksoterm, entalpi sesudah reaksi menjadi lebih kecil, sehingga ΔH negatif. Perubahan entalpi pada suatu reaksi disebut kalor reaksi. Kalor reaksi untuk reaksi-reaksi yang khas disebut dengan nama yang khas pula, misalnya kalor pembentukan,kalor penguraian, kalor pembakaran, kalor pelarutan dan sebagainya.
II.3.1.  Entalpi Pembentukan Standar (ΔHf)
              Entalpi pembentukan standar suatu senyawa menyatakan jumlah kalor yang diperlukan atau dibebaskan untuk proses pembentukan 1 mol senyawa dari unsur-unsurnya yang stabil pada keadaan standar (STP). Entalpi pembentukan standar diberi simbol (ΔHf), simbol f berasal dari kata formation yang berarti pembentukan. Contoh unsur-unsur yang stabil pada keadaan standar, yaitu : H2,O2,C,N2,Ag,Cl2,Br2,S,Na,Ca, dan Hg.
II.3.2. Entalpi Penguraian Standar (ΔHd)
              Entalpi penguraian standar suatu senyawa menyatakan jumlah kalor yang diperlukan atau dibebaskan untuk proses penguraian 1 mol senyawa dari unsure-unsurnya yang stabil pada keadaan standar (STP). Entalpi penguraian standar diberi simbol (ΔHd) simbol d berasal dari kata decomposition yang berarti penguraian.
Menurut Hukum Laplace, jumlah kalor yang dibebaskan pada pembentukan senyawa dari unsur-unsurnya sama dengan jumlah kalor yang diperlukan pada penguraian senyawa tersebut menjadi unsur-unsurnya. Jadi, entalpi penguraian merupakan kebalikan dari entalpi pembentukan senyawa yang sama. Dengan demikian jumlah kalornya sama tetapi tandanya berlawanan karena reaksinya berlawanan arah.
II.3.3. Entalpi Pembakaran Standar (ΔHc)
  Entalpi pembakaran standar suatu senyawa menyatakan jumlah kalor yang diperlukan atau dibebaskan untuk proses pembakaran 1 mol senyawa dari unsur-unsurnya yang stabil pada keadaan standar (STP). Entalpi penguraian standar diberi simbol (ΔHc) simbol d berasal dari kata combustion yang berarti pembakaran.
Pembakaran selalu membebaskan kalor sehingga nilai entalpipembakaran selallu negatif (eksoterm)
II.3.4. Entalpi Pelarutan Standar (ΔHs)
  Entalpi pelarutan standar menyatakan jumlah kalor yang diperlukan atau dibebaskan untuk melarutkan 1 mol zat pada keadaan standar (STP). Entalpi penguraian standar diberi simbol (ΔHs) simbol s berasal dari kata solvation yang berarti pelarutan.
II.3.5. Entalpi Netralisasi Standar
Adalah entalpi yang terjadi pada penetralan 1 mol asam oleh basa atau 1 mol basa oleh asam pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHn. Satuannya = kJ / mol
II.3.6. Entalpi Penguapan Standar
Adalah entalpi yang terjadi pada penguapan 1 mol zat dalam fase cair menjadi fase gas pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHvap. Satuannya = kJ / mol.
II.3.7. Entalpi Peleburan Standar
Adalah  entalpi yang terjadi pada pencairan / peleburan 1 mol zat dalam fase padat menjadi zat dalam fase cair pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHfus. Satuannya = kJ / mol.
II.3.8. Entalpi Sublimasi Standar
Adalah entalpi yang terjadi pada sublimasi 1 mol zat dalam fase padat menjadi zat dalam fase gas pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar,
II.4.     Hukum Hess
Pengukuran perubahan entalpi suatu reaksi kadangkala tidak dapat ditentukan langsung dengan kalorimeter, misalnya penentuan perubahan entalpi pembentukan standar ( DHf o )CO.
Reaksi pembakaran karbon tidak mungkin hanya menghasilkan gas CO saja tanpa disertai terbentuknya gas CO2. Jadi, bila dilakukan pengukuran perubahan entalpi dari reaksi tersebut; yang terukur tidak hanya reaksi pembentukan gas CO saja tetapi juga perubahan entalpi dari reaksi pembentukan gas CO2.
Untuk mengatasi hal tersebut, Henry Hess  melakukan serangkaian percobaan dan menyimpulkan bahwa perubahan entalpi suatu reaksi merupakan fungsi keadaan.
Artinya : “ perubahan entalpi suatu reaksi hanya tergantung pada keadaan awal ( zat-zat pereaksi )   dan keadaan akhir ( zat-zat hasil reaksi ) dari suatu reaksi dan tidak tergantung pada jalannya reaksi.” Pernyataan ini disebut Hukum Hess, rumus yang dapat dipakai yaitu ΔHreaksi = ΔH1 + ΔH2 +….
                                                       
Menurut hukum Hess, karena entalpi adalah fungsi keadaan, perubahan entalpi dari suatu reaksi kimia adalah sama, walaupun langkah-langkah yang digunakan untuk memperoleh produk berbeda. Dengan kata lain, hanya keadaan awal dan akhir yang berpengaruh terhadap perubahan entalpi, bukan langkah-langkah yang dilakukan untuk mencapainya.
Hal ini menyebabkan perubahan entalpi suatu reaksi dapat dihitung sekalipun tidak dapat diukur secara langsung. Caranya adalah dengan melakukan operasi aritmatika pada beberapa persamaan reaksi yang perubahan entalpinya diketahui. Persamaan-persamaan reaksi tersebut diatur sedemikian rupa sehingga penjumlahan semua persamaan akan menghasilkan reaksi yang kita inginkan. Jika suatu persamaan reaksi dikalikan (atau dibagi) dengan suatu angka, perubahan entalpinya juga harus dikali (dibagi). Jika persamaan itu dibalik, maka tanda perubahan entalpi harus dibalik pula (yaitu menjadi -ΔH). Berdasarkan Hukum Hess, penentuan DH dapat dilakukan melalui 3 cara yaitu :
1). Perubahan entalpi ( DH ) suatu reaksi dihitung melalui penjumlahan dari perubahan entalpi beberapa reaksi yang berhubungan.
2). Perubahan entalpi ( DH ) suatu reaksi dihitung berdasarkan selisih entalpi pembentukan ( DHf o ) antara produk dan reaktan.
3). Perubahan entalpi ( DH ) suatu reaksi dihitung berdasarkan data energi ikatan.

Selain itu, dengan menggunakan hukum Hess, nilai ΔH juga dapat diketahui dengan pengurangan entalpi pembentukan produk-produk dikurangi entalpi pembentukan reaktan. Secara matematis
.
Untuk reaksi-reaksi lainnya secara umum

Kegunaan
Dengan mengetahui ΔHf (perubahan entalpi pembentukan) dari reaktan dan produknya, dapat diramalkan perubahan entalpi reaksi apapun, dengan rumus
ΔH=ΔHfP-ΔH fR
Perubahan entalpi suatu reaksi juga dapat diramalkan dari perubahan entalpi pembakaran reaktan dan produk, dengan rumus
ΔH=-ΔHcP+ΔHcR
Konsep dari hukum Hess juga dapat diperluas untuk menghitung perubahan fungsi keadaan lainnya, seperti entropi dan energi bebas. Kedua aplikasi ini amat berguna karena besaran-besaran tersebut sulit atau tidak bisa diukur secara langsung, sehingga perhitungan dengan hukum Hess digunakan sebagai salah satu cara menentukannya.
Untuk perubahan entropi:
  • ΔSo = Σ(ΔSfoproduk) - Σ(ΔSforeaktan)
  • ΔS = Σ(ΔSoproduk) - Σ(ΔSoreaktan).
Untuk perubahan energi bebas:
  • ΔGo = Σ(ΔGfoproduk) - Σ(ΔGforeaktan)
  • ΔG = Σ(ΔGoproduk) - Σ(ΔGoreaktan).

II.5.     Penentuan ΔH Reaksi
Hukum Hess menyatakan bahwa perubahan entalpi tidak tergantung pada berapa banyak tahapan reaksi, tetapi tergantung pada keadaan awal dan akhir. Dengan kata lain, untuk suatu reaksi keseluruhan tertentu, perubahan entalpi selalu sama, tak peduli apakah reaksi itu dilaksanakan secara langsung ataukah secara tak langsung dan lewat tahap-tahap yang berlainan. Rumus yang dapat dipakai yaitu:





II.5.1. Penentuan ∆H Reaksi berdasarkan Eksperimen (Kalorimeter)

Penentuan kalor reaksi secara kalorimetris merupakan penentuan yang didasarkan atau diukur dari perubahan suhu larutan dan kalorimeter dengan prinsip perpindahan kalor, yaitu jumlah kalor yang diberikan sama dengan jumlah kalor yang diserap. Kalorimeter adalah suatu sistem terisolasi (tidak ada pertukaran materi maupun energi dengan lingkungan di luar kalorimeter). Dengan demikian, semua kalor yang dibebaskan oleh reaksi yang terjadi dalam kalorimeter, kita dapat menentukan jumlah kalor yang diserap oleh air serta perangkat kalorimeter berdasarkan rumus:

q.larutan = m c ∆T
q.kalorimeter = C ∆T

q = jumlah kalor
m = massa air (larutan) di dalam kalorimeter
c = kalor jenis air (larutan) di dalam kalorimeter
C = kapasitas kalor dari kalorimeter
∆T = kenaikan suhu larutan (kalorimeter)

Oleh karena tidak ada kalor yang terbuang ke lingkungan, maka kalor reaksi sama dengan kalor yang diserap oleh larutan dan kalorimeter, tetapi tandanya berbeda :

qreaksi = -(qlarutan + qkalorimeter)
Kalorimeter yang sering digunakan adalah kalorimeter bom. Kalorimeter bom terdiri dari sebuah bom (wadah tempatberlangsungnya reaksi pembakaran, biasanya terbuat dari berlangsungnya reaksi pembakaran, biasanya terbuat dari bahan stainless steel) dan sejumlah air yang dibatasi dengan wadah kedap panas. Jadi kalor reaksi sama dengan kalor yang diserap atau dilepaskan larutan, sedangkan kalor yang diserap atau dilepaskan larutan, sedangkan kalor yang diserap oleh gelas dan lingkungan diabaikan.

qreaksi = -qlarutan
II.5.2. Penentuan ∆H Reaksi dengan Hukum Hess

Hukum Hess : ” Kalor reaksi yang dilepas atau diserap hanya bergantung pada keadaan awal dan keadaan akhir”.
Untuk mengubah zat A menjadi zat B (produk) diperlukan kalor reaksi sebesar ∆H. Atau cara lain yaitu mengubah zat A menjadi zat B dengan kalor reaksi ∆H1, zat B diubah menjadi zat C dengan kalor reaksi ∆H2 dan zat C diubah menjadi zat D dengan kalor reaksi ∆H3 . Sehingga harga perubahan entalpi adalah
∆Hreaksi = ∆H1 + ∆H2 + ∆H3 .
Hal tersebut dapat dibuat siklus dan diagram tingkat energinya sebagai
berikut :
Siklus energi pembentukan zat D dari zat A

Diagram tingkat energi pembentukan zat D dari zat A

Contoh Soal :
Diketahui data entalpi reaksi sebagai berikut :
Ca(s) + ½ O2(g) → CaO(s) ∆H = - 635,5 kJ
C(s) + O2(g) → CO2(g) ∆H = - 393,5 kJ
Ca(s) + C(s) + ½ O2(g) → CaCO3(g) ∆H = - 1207,1 kJ
Hitunglah perubahan entalpi reaksi : CaO(s) + CO2(g) → CaCO3(s) !
Penyelesaian :
CaO(s) .............................→ Ca(s) + ½ O2(g) ....∆H = + 635,5 kJ
CO2(g)............................ → C(s) + O2(g) ............∆H = + 393,5 kJ
Ca(s) + C(s) + ½ O2(g) → CaCO3(s)................. ∆H = - 1207,1 kJ
_________________________________________ _
CaO(s) + CO2(g) ...........→ CaCO3(s).................. ∆H = - 178,1 kJ



        II.6.     Energi Ikatan

Energi ikatan didefinisikan sebagai panas reaksi yang dihubungkan dengan pemecahan ikatan kimia dari molekul gas menjadi bagian-bagian gas. Terkadang disebut juga entalpi ikatan, nama yang sesungguhnya lebih tepat.
Energi disosiasi ikatan (B,E) dapat digunakan untuk menghitung panas reaksi yang dihubungkan dengan
 
i

ΔH0= - ∑ ni BEi + ∑ njBEj
dimana BE adalah energi ikatan per mol ikatan, nj dan ni adalah jumlah mol ikatan yang pecah atau terbentuk dalam hal reaktan dan produk.
Dalam hal yang sama, data panas reaksi dapat juga digunakan untuk menghitung energi disosiasi ikatan dari setiap ikatan tertentu, asal saja data lain dalam persamaan diketahui. Satu hal yang harus diingat bahwa lingkungan sekeliling atom sangat mempengaruhi energy ikatan dari ikatan tertentu; oleh karena itu harga yang diperoleh dari persamaan adalah harga rata-rata atau harga kira-kira.
Walaupun energi ikatan adalah untuk molekul dalam fase gas, tetapi harga kira-kira panas reaksi dapat dihitung dari fase terkondensasi dapat dikoreksi jika panas penguapan, panas sublimasi dan lain-lain dapat diikutsertakan. 
            Suatu reaksi yang DH–nya ditentukan dengan menggunakan energi ikatan, maka atom-atom yang terlibat dalam reaksi harus berwujud gas.
Berdasarkan jenis dan letak atom terhadap atom-atom lain dalam molekulnya, dikenal 3 jenis energi ikatan yaitu :
a.   Energi Atomisasi.
Adalah energi yang diperlukan untuk memutuskan semua ikatan 1 mol molekul menjadi atom-atom bebas dalam keadaan gas.
Energi atomisasi = jumlah seluruh ikatan atom-atom dalam 1 mol senyawa.
b.   Energi Disosiasi Ikatan.
Adalah energi yang diperlukan untuk memutuskan salah 1 ikatan yang terdapat pada suatu molekul atau senyawa  dalam keadaan gas.
c.   Energi Ikatan Rata-Rata.
Adalah energi rerata yang diperlukan untuk memutuskan ikatan atom-atom pada suatu senyawa ( notasinya = D ). Energi ikatan suatu molekul yang berwujud gas dapat ditentukan dari data entalpi pembentukan standar (DHf ) dan energi ikat unsur-unsurnya. Prosesnya melalui 2 tahap yaitu :
o    Penguraian senyawa menjadi unsur-unsurnya.
o         Pengubahan unsur menjadi atom gas.
Reaksi kimia pada dasarnya terdiri dari 2 proses :
o         Pemutusan ikatan pada pereaksi.
o         Pembentukan ikatan pada produk reaksi.
Pada proses pemutusan ikatan            = memerlukan energi.
Pada proses pembentukan ikatan        = membebaskan energi
Secara umum dirumuskan :

II.7.   Jenis-Jenis Kalor
Setiap sistem atau zat mempunyai energi yang tersimpan didalamnya. Energi potensial berkaitan dengan wujud zat, volume, dan tekanan. Energi kinetik ditimbulkan karena atom–atom dan molekul-­molekul dalam zat bergerak secara acak. Jumlah total dari semua bentuk energi itu disebut entalpi (H). Sedangkan kalor adalah bentuk energi yang berpindah dari suhu tinggi ke suhu rendah. Jika suatu benda menerima / melepaskan kalor maka suhu benda itu akan naik/turun atau wujud benda berubah.
II.7.1. Kalor Pembentukan Standar
Adalah nama lain dari entalpi yang terjadi pada pembentukan 1 mol senyawa dari unsur-unsurnya pada suhu dan tekanan standar ( 25 oC, 1 atm ). Entalpinya bisa dilepaskan maupun diserap. Satuannya adalah kJ / mol. Bentuk standar dari suatu unsur adalah bentuk yang paling stabil dari unsur itu pada keadaan standar ( 298 K, 1 atm ). Jika perubahan entalpi pembentukan tidak diukur pada keadaan standar maka dinotasikan dengan DHf.
Catatan :
o   DHf unsur bebas = nol
o   Dalam entalpi pembentukan, jumlah zat yang dihasilkan adalah 1 mol.
o   Dibentuk dari unsur-unsurnya dalam bentuk standar.

II.10.2. Kalor Penguraian Standar
Adalah nama lain dari entalpi yang terjadi pada penguraian 1 mol senyawa menjadi unsur-unsur penyusunnya pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHd. Satuannya = kJ / mol. Perubahan entalpi penguraian standar merupakan kebalikan dari perubahan entalpi pembentukan standar, maka nilainya pun akan berlawanan tanda.
Menurut Marquis de Laplace, “ jumlah kalor yang dilepaskan pada pembentukan senyawa dari unsur-unsur penyusunnya = jumlah kalor yang diperlukan pada penguraian senyawa tersebut menjadi unsur-unsur penyusunnya. “ Pernyataan ini disebut Hukum Laplace.

II.7.3. Kalor Pembakaran Standar
Adalah nama lain dari entalpi yang terjadi pada pembakaran 1 mol suatu zat secara sempurna pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHc. Satuannya = kJ / mol.
II.7.4. Kalor Netralisasi Standar
Adalah nama lain dari entalpi yang terjadi pada penetralan 1 mol asam oleh basa atau 1 mol basa oleh asam pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHn. Satuannya = kJ / mol.
II.7.5. Kalor Penguapan Standar
Adalah nama lain dari entalpi yang terjadi pada penguapan 1 mol zat dalam fase cair menjadi fase gas pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHvap. Satuannya = kJ / mol.
II.7.6. Kalor Peleburan Standar
Adalah  nama lain dari entalpi yang terjadi pada pencairan / peleburan 1 mol zat dalam fase padat menjadi zat dalam fase cair pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHfus. Satuannya = kJ / mol.
II.7.7. Kalor Sublimasi Standar
Adalah entalpi yang terjadi pada sublimasi 1 mol zat dalam fase padat menjadi zat dalam fase gas pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHsub. Satuannya = kJ / mol.
II.7.8. Kalor Pelarutan Standar
Adalah nama lain dari entalpi yang terjadi ketika 1 mol zat melarut dalam suatu pelarut ( umumnya air ) pada keadaan standar. Jika pengukuran tidak dilakukan pada keadaan standar, maka dinotasikan dengan DHsol. Satuannya = kJ / mol.

BAB III
PENUTUP

III.1.    Kesimpulan
            Singkatnya, materi pembelajaran pada termokimia ini merupakan materi dasar yang wajib untuk dipelajari dan dipahami secara mendalam. Materi yang secara umum mencakup termodinamika I, kalor reaksi, kerja, entalpi, kalorimeter, hukum Hess, penentuan DH reaksi, energi ikatan, dan jenis-jenis kalor merupakan materi-materi dasar dalam pelajaran kimia yang berguna untuk mempelajari materi selanjutnya yang tentu saja lebih rumit. Dalam makalah ini materi duraikan secara singkat agar para pembaca lebih mudah memahaminya.

III.2.    Saran
            Dengan adanya makalah sederhana ini, penyusun mengharapkan agar para pembaca dapat memahami materi termokimia ini dengan mudah. Saran dari penyusun agar para pembaca dapat menguasai materi singkat dalam makalah ini dengan baik, kemudian dilanjutkan dengan pelatihan soal sesuai materi yang berhubungan agar semakin menguasai materi.


DAFTAR PUSTAKA

Brady, James .E. 1999. Kimia Universitas Azas & Struktur Jilid 1, Edisi ke-5. Jakarta : Binarupa      Aksara
Kleinfelter, Wood. 1989.Kimia Untuk Universitas Jilid 1.ed.6.Jakarta : Erlangga
Rahayu,Nurhayati,dan Jodhi Pramuji G.2009.Rangkuman Kimia SMA.Jakarta : Gagas Media
Sutresna,Nana. 2007.Cerdas Belajar Kimia untuk Kelas XI.Jakarta : Grafindo Media Pratama
Kuliah Kimia Dasar I oleh Pak Umar
Dogra, SK. 1990. Kimia Fisik dan Soal-Soal. Jakarta: Universitas Indonesia
Denbigh, Kenneth. 1980. Prinsip-Prinsip Keseimbangan Kimia edisi ke-empat. Jakarta: Universitas Indonesia
free.vlsm.org/v12/sponsor/.../0281%20Fis-1-4d.htm
http://blog.ums.ac.id/vitasari/files/2009/06/kuliah-11_panas-reaksi.pdf
http://elearning.gunadarma.ac.id/docmodul/pengantar_kimia/Bab_8
http://id.wikipedia.org/wiki/Hukum_Hess
http://id.wikipedia.org/wiki/Kalorimeter\
http://www.scribd.com/doc/20100823/Kalorimeter
http://www.chem-is-try.org/materi_kimia/kimia_fisika1/termokimia/pengertian-termokimia/
http://elearning.uin-suka.ac.id/attachment/hukum_i_termo_sh8y0_11975.ppt
http://mesin.brawijaya.ac.id/diktat_ajar/data/02_c_bab1n2_termo1.pdf
http://ocw.gunadarma.ac.id/course/diploma-three-program/study-program-of-computer-engineering-d3/fisika-dasar-2/termokimia
Wijayanti. 2009. Penentuan Entalpi Reaksi. Kamis, 10 Desember. http://kimia-asyik.blogspot.com/2009/12/penentuan-entalpi-reaksi.html
http://www.kimiaku.info/termokimia.pdf

Komentar